Big Data: как применять и анализировать большие данные?

Big Data: как применять и анализировать большие данные?

Big Data - это большие массивы информации, которые часто бывают неупорядоченными. Технологии работы с такими данными известны как Big Data технологии. Это направление в IT является одним из самых популярных в настоящее время. И это не удивительно. Приложение технологий Big Data открывает новые возможности для развития бизнеса, а также предоставляет клиентам персонифицированные продукты и сервисы.

В данной статье мы рассмотрим технологии анализа больших данных и объясним, как их использование может пригодиться в бизнесе.

Приблизительно с 2010 года стало понятно, что аналитика большого объема данных имеет очень широкое применение в разных отраслях. Развитие информационных технологий и вычислительных мощностей позволило обработку колоссальных объемов данных. Огромные массивы информации поступают из самых разных источников: социальные сети, интернет-магазины, форумы, мобильные устройства, измерительные приборы, метеостанции, аудио- и видеорегистраторы и другие. Эти данные растут экспоненциально, а традиционные методы и инструменты уже не могут справиться с их обработкой.

Понятие Big Data возникло в 2008 году, когда был выпущен специальный номер журнала Nature, посвященный влиянию огромных массивов информации в развитии науки. Для обработки всех этих данных нужны специальные алгоритмы и программные средства, также входящие в понятие Big Data.

Анализ методов хранения данных

В современном мире большие объемы данных являются незаменимыми ресурсами, однако их использование может оказаться неэффективным, если они не будут обработаны и соответственно использованы. Для обработки больших данных используются методы, которые состоят из нескольких этапов. Первым шагом является сбор информации из различных источников, включая серверы, базы данных и другие устройства. Далее следует обеспечить их хранение, обработку и защиту от потери.

В настоящее время для хранения данных используются как собственные вычислительные ресурсы, так и облачные решения. Тем не менее, использование собственных ресурсов может привести к проблеме масштабирования, а также к дополнительным расходам на поддержание и обновление оборудования. При этом, в периоды пиковых нагрузок, физический сервер может выйти из строя, при этом перестраховка приводит к неоправданным расходам.

Использование облачных решений для хранения данных позволяет избежать данных проблем и обеспечивает быстрое масштабирование и резервирование вычислительных ресурсов. В облачных решениях есть возможность быстро увеличить объем информации, а также обеспечить надежность, отказоустойчивость и гибкую настройку. Таким образом, каждый индивидуальный подход должен быть оценен в соответствии со спецификой бизнес-задач, требующих обработки данных.

Один из основных и заключительных этапов работы с большими данными - это их анализ. Именно благодаря этому этапу Big Data начинает приносить реальную практическую пользу. Анализ позволяет отфильтровать все ненужное и выделить самую важную информацию, которая может быть полезна для бизнеса.

Методы анализа больших данных очень разнообразны, и их описание не входит в рамки одной статьи. Однако, мы можем рассказать об основных методах.

Для анализа больших объемов данных необходима предварительная обработка данных. Этот метод заключается в приведении разнородных данных к общему виду, дополнении недостающей информации и отсеивании лишних. Такой этап работы с данными называется подготовительным и предшествует самому анализу.

Data Mining, что в переводе означает «добыча данных», в сущности так и является: при помощи данного метода из набора информации извлекаются ценные закономерности. В области Data Mining происходит решение разных видов задач, таких как классификация, кластеризация (группировка объектов в зависимости от их сходства), анализ отклонений и другие.

Нейронные сети – это особый тип алгоритмов машинного обучения, который напоминает работу человеческого мозга. Они способны анализировать входные данные и выдавать требуемый результат. Применение умных нейросетей достаточно широко: они могут распознавать лица на фотографиях, а также определять недобросовестные транзакции на основе ряда признаков.

В современном мире прогностический анализ используется для предсказания различных событий: от поведения клиентов и увеличения продаж до изменения финансовых показателей компании, курсов валют, доставки товаров и поломок оборудования. Одним из ключевых моментов в прогнозировании будущих событий является использование ретроспективных данных и выделение параметров, которые могут значительно влиять на результат. Таким образом, прогностический анализ становится незаменимым инструментом для различных индустрий, что позволяет им оперативно адаптироваться к изменяющимся условиям и принимать управленческие решения на основе научных данных.

Статистический анализ

Большие объемы данных (Big Data) помогают улучшить точность статистического анализа: чем более представительной будет выборка, тем более точными будут результаты исследований.

Визуализация данных является неотъемлемой частью их анализа. Она позволяет превратить информацию в понятный и удобный для использования формат, включая графики, диаграммы, карты и гистограммы. Обычно этот этап анализа выполняется в конечной стадии, когда необходимо проиллюстрировать результаты для пользователей.

Для эффективной визуализации используются специальные инструменты Big Data, предназначенные для работы с каждым конкретным методом.

Рост объема информации, с которым мы сталкиваемся каждую секунду, стремительно ускоряется. Так, только за 2020 год пользователи сгенерировали более 60 зеттабайт (60 × 10 21 байт) данных. При этом, по прогнозам, к 2025 году подобный объем информации вырастет втрое. В связи с этим, анализ Big Data является одним из перспективных технологических направлений. Большие данные актуальны для бизнеса, науки и сферы государственного управления. Поэтому крупные компании активно инвестируют в эту область.

Какие характеристики определяют Big Data как информацию?

Big Data - это данные, которые отличаются тремя основными свойствами, называемыми "тремя V":

Объем (Volume): Это означает, что данные должны быть в большом количестве. Эти данные уже измеряются не терабайтами, а петабайтами и эксабайтами.

Скорость (Velocity): Большие данные поступают непрерывно из разных источников, и этот процесс происходит очень быстро.

Разнообразие (Variety): Big Data - это информация разных типов, включая текстовые и графические документы, аудио- и видеофайлы, а также логи. Она может быть совсем неструктурированной или упорядоченной частично.

С ростом востребованности направления в последние годы к "трем V" были добавлены еще два признака: достоверность (Veracity) и ценность (Value). Это означает, что данные должны быть точными и приносить пользу бизнесу. Иногда выделяют еще жизнеспособность (Viability).

Каковы плюсы использования Big Data?

Применение технологии анализа больших данных дает возможность оптимизировать бизнес-процессы, повысить производительность, улучшить качество товаров и услуг, минимизировать риски, предвидеть тенденции рынка, а также получить глубокое понимание поведения клиентов, их потребностей и интересов для более точного попадания в целевую аудиторию. К примеру, большим сферам применения Технологии Big Data были телекоммуникационные компании, банковская и розничная отрасли. Применение Big Data позволяет повысить экологические характеристики и энергоэффективность в производстве. Для продавцов это выгодно, а для покупателей - удобно.

В настоящее время технологии хранения и анализа больших данных практически неизбежны и востребованы не только в торговле, рекламе и индустрии развлечений, но и в различных сферах деятельности, включая безопасность, медицину, сельское хозяйство, промышленность, энергетику, науку и государственное управление.

Рассмотрим несколько примеров практического применения больших данных, которые имеют актуальность в разных отраслях деятельности.

Внедрение инноваций в сфере медицины значительно расширяет возможности науки и технологий, в том числе при помощи анализа Big Data. Некоторые технологические компании уже создали интеллектуальные продукты и сервисы, с помощью которых можно решать принципиально новые задачи в медицине. Например, в Америке была разработана платформа «вычислительной биологии» для установления взаимодействия химических веществ с сигнальными рецепторами клеток организма. При использовании инструментов Big Data возможна революция в фармакологии, поскольку с ее помощью можно находить и создавать лекарственные препараты, которые точно попадают в цель и могут эффективно лечить различные заболевания.

Сегодня анализ больших данных используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP уральского региона были представлены данные, демонстрирующие, что использование Big Data в циклических медицинских тестированиях выявляет ошибки с точностью более чем на 20%, по сравнению с неавтоматизированными измерениями.

В Европе технология анализа больших данных внедряется в сферу медицины более широкими возможностями. Здесь проведено исследование, в ходе которого была проанализирована информация на 150 000 пациентов, что позволило выявить связь определенных генетических факторов с риском возникновения рака. Такой анализ выполнен благодаря использованию технологий Big Data.

Изучение поведения клиентов

В настоящее время маркетологи активно используют большие данные для оптимизации эффективности рекламной кампании. Данные анализируются из истории покупок, поиска, посещений и лайков в социальных сетях для определения предпочтений пользователей. Это позволяет предлагать клиентам только самые подходящие предложения, сделав рекламу более адресной и эффективной, благодаря Big Data.

Одним из первооткрывателей в этой области стал известный маркетплейс Amazon. В системе рекомендаций учитывались не только история покупок и анализ поведения клиентов, но и внешние факторы, такие как сезон и предстоящие праздники. В результате система рекомендаций Amazon стала ответственной за более чем треть всех продаж.

Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.

Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.

Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.

Внедрение новых технологий и интеллектуальных систем сбора и анализа данных позволяет больше не ограничиваться реактивными мерами по устранению простоев и сокращению производительности, а применять проактивный подход, предотвращая возможные поломки и исключая из процесса неэффективные операции.

Так, аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу на основе больших данных, которая автоматизировала работу служб компании и сделала управление предприятием более прозрачным и эффективным. Данные теперь можно оперативно получать по любым текущим процессам, что повышает качество работы предприятия. Новая платформа также упрощает сотрудничество аэропорта с авиакомпаниями, оптимизирует планирование ресурсов, в том числе, при выполнении технического обслуживания и ремонта терминалов.

Ожидается, что применение этой платформы под названием «умный сервис» улучшит техническое состояние оборудования и общую оборачиваемость запасов на 10%, а уровень сервиса поставщиков на 20%. Теперь производственные процессы в «Пулково» стали еще более эффективными и оптимальными. Инновационные технологии и интеллектуальные системы мониторинга позволяют оптимизировать производственные процессы и решать задачи с высокой точностью.

Прогнозирование с помощью обработки больших объемов данных становится все более популярным. Основная идея заключается в создании моделей и прогнозировании будущих событий и поведения людей на их основе. Такой подход способен помочь в различных сферах, таких как планирование рекламных кампаний, определение спроса на услуги и товары, а также помогать взаимодействовать с клиентами.

Преимущество использования предсказательной аналитики на основе Big Data не ограничивается только сферой маркетинга и торговли. В сфере образования, например, она может помочь определить вероятность успеха учеников и эффективность программ.

Прогнозная аналитика уже нашла свое применение в авиации. Airbus планирует использовать предиктивное обслуживание к 2025 году для уменьшения случаев, когда некоторые самолеты не могут вылететь из-за выявленных неисправностей. Другая компания, Lufthansa Technik, уже внедрила платформу, которая прогнозирует сроки замены деталей.

Таким образом, использование прогнозной аналитики на основе больших объемов данных может иметь практическую пользу в различных отраслях, увеличивая эффективность процессов и помогая предсказать будущие события и тренды.

Небольшая статистика

Консалтинговая компания Accenture провела исследование в 2014 году, опросив руководителей 1000 компаний из разных стран мира. Было обнаружено, что 60% из них уже внедрили системы анализа больших данных и были довольны результатами. Участники опроса отметили создание новых продуктов и услуг, увеличение количества способов заработка, улучшение клиентского опыта, а также повышение лояльности клиентов среди основных преимуществ Big Data. Источник: https://www.tadviser.ru/.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *